51 25X1X7 # ESTIMATE OF THE COMMUNIST CHINESE AIR THREAT AGAINST INDIA 17 JANUARY 1963 17 January 1963 25X1X7 SUBJECT: ESTIMATE OF THE COMMUNIST CHINESE AIR THREAT AGAINST INDIA #### Object 1. The object of this study is to examine overall Chinese air capability and to assess its effectiveness in operations against India. #### THE COMMUNIST CHINESE AIR FORCE #### History 2. From a humble beginning in 1949 the Communist Chinese Air Force has developed rapidly into a significant force; indeed, in combat strength it is now the third largest air force in the world. Initially, and for a number of years, its expansion was made possible by the provision of technical advisers, instructors, and aircraft by the USSR. An impetus to development was given by the Korean War. An aircraft industry was built up with extensive aid from the Soviet Union and the manufacture of relatively modern Soviet types, such as MIG-17 (FRESCO) fighters was started in the late fifties. GROUP 1 Excluded from automatic Downgrading and Declassification #### Economic and Political Considerations - 3. The development of the aircraft industry was part of a wide program of forced industrial development, designed to transform China into a powerful self-sufficient industrialized nation in the shortest possible time. Initial progress was impressive but in 1958 the regime ordered the adoption of radical programs which attempted to accelerate greatly the pace of production and development. At the same time they introduced the communes in the countryside. It is now clear that those policies failed, and aggravated by the bad weather conditions in the past three years, they have resulted in poor harvests and a severe setback to the economy as a whole. A serious food shortage caused a pronounced deterioration in the health, strength and morale of a significant part of the populace. A drastic reorganization of economic priorities in 1961 has now resulted in heavy industry being placed after agriculture and light industry. A slight improvement in the food situation has been experienced in 1962 but there is no prospect of a substantial increase in industrial production in the next few years. - 4. The abrupt withdrawal in 1960 of most of the Soviet engineers, technicians and economic advisers, plus the sharp reduction in imports of Soviet equipment, have seriously reduced production in industries of defense importance. Unless this situation is remedied, China will be - 2 - unable to build such equipment as modern aircraft (e.g., the MIG-21 (FISHBED) and TU-16 (BADGER)) in significant quantities for some years. 5. We believe that as a result of the discord in Sino-Soviet relations the Soviet Union has not supplied any modern offensive aircraft to China in the past two years, although it has been willing to make them available to other countries such as Iraq, Indonesia, and the UAR. We consider that as long as the serious rift in relations remains the Soviet Union will be reluctant to supply modern aircraft to China, and China will be faced with growing obsolescence in her air forces. Even in the unlikely event of its economic problems and ideological differences being resolved in the near future, it would be several years before China could significantly improve its air capability entirely from its own resources. If combat aircraft were directly supplied by the USSR there would be, of course, a limited improvement in a much shorter period. #### Organization of the Air Force 6. The Communist Chinese Air Force (CCAF), subordinate to the Ministry of Defense, is organized as a single entity encompassing all phases of air operations and has no operational commands. However, in most other respects it reflects Soviet concepts and principles. CCAF headquarters is located at Peiping and consists of operational, logistic .,.. and training elements. The Communist Chinese Naval Air Force (CCNAF) is an integral part of the navy with its headquarters also at Peiping. 7. The air defense system is controlled from Peiping through at least seven district air defense headquarters, which are responsible for the coordination and control in their particular areas. During air defense operations naval fighter units are under the operational control of the CCAF, through these district headquarters. #### Strength and Deployment 8. The CCAF and CCNAF have a combined strength of about 2,650 aircraft; the majority of which are jet fighters (1,950) deployed along the coastal periphery and adjacent to major inland centers. The IL-28 (BEAGLE) jet light bomber force (325), the piston TU-2 (BAT) light bombers (105), the special ground attack aircraft (40 IL-10 (BEAST)*), and a few obsolescent TU-4 (BULL) medium piston-engined bombers (15) are deployed mainly in northern areas. In addition, we have firm evidence of two BADGERs which were probably delivered to the Chinese by the USSR prior to mid-1960. What evidence we have suggests that these In addition, a unit of 30 MIG-15 (FAGOTs) is specially trained in ground attack and, in fact, all FAGOT/FRESCO are readily adaptable to ground attack. aircraft are flyable, but we cannot be certain whether they are operational. We estimate the strength of the air transport force to be approximately 195 piston-engined short-range aircraft, made up mainly of the IL-2 (CAB), the IL-12 (COACH) and the IL-14 (CRATE). (CAB is very similar to the Dakota or DC-3. COACH and CRATE resemble the Convair 240.) A summary of aircraft strength is at Appendix A, aircraft performance details are given at Appendix B, and a map showing general deployment and radar cover is at Appendix C. #### **Airfields** 9. There is a well-developed airfield system in China which includes a network of airfields stretching some 400 miles inland, providing a strong support for the coastal bases. Approximately 260 airfields are distributed throughout the country, including 135 which are suitable for jet fighters or jet light bombers, and 30 of which can be used for jet medium bombers. The airfield system also provides facilities for redeployment of aircraft (mobility is stressed in the CCAF/CCNAF) to any sector in eastern and coastal regions from North Korea to the Indochina borders. The Chinese are capable of rapid airfield construction, as they have demonstrated when the need has arisen in the past. - 5 - - 10. Many Chinese airfields in the area adjacent to the Indian border are at high altitudes (two are at an altitude of above 10,000 ft. a.m.s.l.) and have natural or gravel surfaces rendering them generally unsuitable for sustained jet operations. However, the Chinese do possess airfields in the area which are not at high altitudes and which could be used for light bomber or fighter action against India. The airfields most likely to be used for operations against the Ladakh-Jammu-Kashmir area, are Ho-tien (Khotan) at 3,000 ft. elevation and So-che (Yarkand) at 4,400 ft. elevation. Details of airfields in Tibet and Western China are given at Appendix D; their location is shown on the map at Appendix C. - prevent the Chinese from conducting militarily significant jet operations. However, they would pose serious limitations, particularly for sustained operations. Reductions in radius of action and/or bomb load would be necessary for jet bomber operations from some airfields in the Himalayan area. For example, at Lhasa, at 14,000 ft. elevation and a temperature of 0° Centigrade, we believe that a BEAGLE at a reduced all-up weight of 46,600 pounds would require a takeoff distance and speed which would probably result in tire failure. ^{*} See Table 5 of Appendix B for required takeoff and landing distances for BEAGLE at various altitudes, weights and temperature. #### General Capabilities - 12. Although the CCAF/CCNAF is numerically large, its capabilities are seriously limited in several important aspects. First, it lacks balance in that is is basically a defensive force (three-fourths of its aircraft are fighters) and it has a very limited bombardment capability. Secondly, inadequacy of native production and cessation of Soviet assistance has created a marked obsolescence in equipment. Thirdly, the Chinese Air Force lacks practically all types of advanced weapons. For example, we do not believe they are equipped with air-to-air missiles. - 13. The Chinese do not have a nuclear weapons capability. We believe that nuclear progress was considerably set back by the withdrawal of Soviet technicians in mid-1960. Resumption of Soviet assistance or Soviet supply seems most unlikely in the light of the present tension in Sino-Soviet relations. Therefore, we estimate that the Chinese will not acquire a militarily significant nuclear capability in the next few years. - 14. Communist Chinese airmen have demonstrated neither the techniques nor level of proficiency in air combat which would permit them to conduct successful offensive tactical operations against first-line opposition. Although they have probably taken measures to improve combat - 7 - capability since their encounter with the Chinese Nationalists in 1958, POL shortages have sharply limited training time in the air. #### Offensive Capability - 15. The CCAF jet light bomber force has had no known operational experience, but has been carrying out training for several years in the bombing role. It probably has a limited radar bombing and E.C.M capability, and we estimate that it has the ability to mount reasonably effective operations. A piston-engined light bomber force is still retained but its effectiveness in the face of modern opposition would be very low. - 16. The medium bomber force, consisting of 15 BULLs and possible 2 BADGERs, possesses a very limited strategic bombing capability due to its small size. The BULL, a piston-engined bomber dating from 1948, would be vulnerable to jet interception, especially during daylight hours.* #### Defensive Capability 17. About three-fourths of its aircraft are fighters. The CCAF/CCNAF air defense
capability is restricted by the lack of more modern ^{*} See Appendix B for operating characteristics of bombers. types of aircraft, and by the fact that less than 10 percent of the fighters have an all-weather intercept capability. A comprehensive and relatively effective radar network, as shown at Appendix C, exists along the coast from Hainan in the south to the Soviet frontier. Inland there is partial coverage up to a depth of about 500 miles. Beyond that distance, cover is limited to the more important cities and industrial complexes. In addition, we believe that the Chinese have a limited early warning capability along the Sino-Indian border. - 18. Despite the deficiencies listed above, as well as weaknesses in pilot proficiency and fighter tactics, in China proper the CCAF/CCNAF would have a good chance of intercepting intruding aircraft during daylight hours in clear visibility. In the Himalayan area China's air defense capabilities are at present limited because of inadequate radar coverage and the apparent absence of any jet fighter aircraft. The Chinese may have a very limited ground control intercept capability from bases in Tibet, but we have no firm evidence of this. - 19. Within China proper we have evidence of a small number of surface-to-air missile sites at Peiping and at two other locations in the north and west. Moreover, China has a well coordinated conventional anti-aircraft artillery defense system in her coastal provinces. Inland, - 9 - however, the scale of defense decreases rapidly and only the more important cities are known to have reasonable A.A. cover. #### Air Transport Capabilities - 20. The operating capability of the air transport force is low by Western standards; aircrews are not highly trained, payloads are small, serviceability is generally low, and navigational facilities in China are poor. - 21. Nevertheless, air transport plays an important part in Chinese defense plans. The main task is to provide logistic and tactical support for all armed forces. China's air transport facilities are inadequate to cope with vast distances of the country which are poorly served by ground transport systems. There is a small civil air fleet which is regularly used for carrying freight, and conversion to military use of a small part of this fleet could quickly be effected. - 22. The Chinese Communists have only a limited capability for airborne operations. Any large-scale diversion of civil aircraft would probably cause a major disruption of essential civil air transport operations. The Chinese are also severely handicapped by a lack of aircrews trained for airborne operations, and by lack of suitable transport aircraft with a "heavy drop" capability. Nevertheless, in favorable - 10 - circumstances a limited operation might be undertaken. Supply dropping could also be carried out. #### Air Operations Against India 23. Communist China is extremely sensitive to the possibility of an attack by Nationalist China in the present period of economic difficulties, but we do not believe the resulting desire to maintain a strong air posture in East China would seriously handicap Communist China's ability to wage a limited air campaign against India. Even so, it is unlikely that the Chinese Communists could deploy and logistically support more than 290 tactical aircraft for operations against India (i.e., 180 jet fighters, 50 jet light bombers, and 60 piston light bombers). #### Logistics 24. The key to tactical air operations against India would be the amount of logistic support, particularly POL, which the Chinese could provide to forward bases. We have no evidence of stockpiling in the area. Because of army demands the amount of logistic support that could be made available to the air force would be limited. Furthermore, because of the extent to which civil and military air transport is stretched, the numbers of such aircraft that could be made available for air supply operations in the area would also be limited. - 11 - - which could be supported logistically from bases close to railheads in China were to be used, they could sustain a daily average of about 130 tons. However, if as we think, the Chinese wish to avoid disruption of essential civilian and military air transport services, we consider that only about 40 aircraft would be made available. These could uplift 47 tons dealy for a sustained period from railheads in China. This amount, together with a logistic effort of up to 450 tons that could be made available from ground throughput totals some 500 tons daily. Assuming a serviceability rate of about 60 percent this theoretical capacity would permit a possible tactical application of about 150 sorties per day which could be allocated to operational sorties as follows: - (a) 15 jet light bomber sorties. - (b) 35 piston light bomber sorties. - (c) 40 jet fighter sorties. - (d) 60 jet ground attack sorties. - 26. If air operations were to be supported only by air transport supply the uplift of 47 tons would allow the following alternative operations: - (a) 4-5 jet light bomber sorties (each at 3 short tons per flying hour for 3.3 hours), OR - (b) 12-14 piston light bomber sorties (each at 1 short ton per flying hour for 3.6 hours), OR - (c) 11-16 jet fighter sorties (each at 1 1/2 short tons per flying hour for 1.6 to 2.1 hours), OR - (d) 26-29 jet ground attack sorties (each at 2 short tons per flying hour for 0.8 to 0.9 hours). - 27. The mounting of ground logistic operations of the magnitude envisaged in the difficult terrain and climate conditions that obtain calls for a very high degree of organizational, technical and operational competence. Additionally, some 7,000 vehicles would be required. Furthermore, the length of lines of communications and the restricted nature of the bases are factors which militate against logistic operations of this magnitude. Considering the practical limitations, therefore, the possibility of an increase in logistic support being made available from ground resources must be treated with caution. #### Offensive Operations 28. The Communist Chinese bomber force is presently deployed primarily in northern China proper, none of it being located in Tibet or Sinkiang. In time past, limited numbers of BATs, BEAGLES, and BULLs have operated in Tibet from Ka-erh-mu (Golmo). - 29. Despite the recent fighting, there is no evidence of light bomber deployment into South-West China or the Tibetan area. However, if China chose to deploy into these areas a few jet light bombers, operating from Lhasa, they could carry out tactical attacks in the NEFA area. BEAGLES, operating from Kumming or Cheng-tu could also cover most of the NEFA area. Tactical operations against the Ladakh-Jammu-Kashmir area could be mounted from Chinese bases at Ho-tien (Khotan) and So-che (Yarkand). The piston-engined BAT would be suitable for operations in both areas, and in comparison with jet aircraft, would probably give a higher rate of serviceability. However, it would be most vulnerable to jet interception. Under present circumstances the Chinese could only provide very limited close support with ground attack aircraft for their troops; in some areas terrain would limit the effectiveness of such attacks. - 30. By day, in a strategic role, BEAGLEs could operate against cities in northern India, such as Delhi, from So-che (Yarkand). They could bomb targets in the NEFA area and North-Eastern India from Lhasa, Cheng-tu, and Kurming. BEAGLE aircraft, with a reduced bomb load, could bomb Calcutta from Lhasa. By night, because of difficulties of - 14 - operating from Tibetan airfields, we do not consider it likely that the Chinese would attempt such operations with the BEAGLE aircraft. However, we believe that the light bomber force is probably capable of night operations and that a few sporadic raids could be mounted. The BULL and the BADGER, with combat radii of 1,700 nautical miles, could cover Northern and North-Eastern India from their base in Sian. The Chinese Communists could, if they chose, deploy these aircraft to suitable bases nearer India. We doubt that more than four to six BULLs could be launched in an attack, but these aircraft would not have long-range fighter protection and would be vulnerable to jet interception if detected. #### Defensive Operations 31. It is reasonable to assume that the continuing expansion of radar facilities in China has by now resulted in a limited air defense radar capability along the entire Himalayan frontier. It would be possible to operate a few fighters in the air defense role in Tibet although our evidence does not suggest that fighters are currently deployed there. Such aircraft would encounter difficult operating conditions, and terrain would limit radar effectiveness. ^{*} See Appendix B for operating characteristics of bombers and Appendix C for aircraft radii of action. #### Airborne and Air Supply Operations 32. In view of the limitations of and other calls upon the transport force, extensive airborne operations are unlikely. The air situation, however, would not necessarily be unfavorable to the Chinese in all areas where they might contemplate limited airborne operations. There is some evidence that limited supply dropping has been carried out. #### CONCLUSIONS - 33. Although the Communist Chinese Air Forces are numerically large, most of the aircraft are obsolescent, few have an all-weather capability, they lack advanced weapons such as air-to-air missiles, and pilot combat proficiency is only fair. Moreover, China is unlikely to obtain more than a few modern combat aircraft in the next few years, either from its own industry or from the Soviet Union. - 34. The Chinese Communists could deploy and support approximately 290 tactical aircraft for operations against India without seriously weakening their defense posture toward Nationalist China. However, the Communists' ability to wage a tactical air campaign against India would be seriously
handicapped by difficulties in the provision of logistic - 16 - support. The scarcity of suitable airfields in Tibet and Sinklang would constitute an added hindrance. - 35. The Chinese could mount only light, sporadic raids against India with piston bombers (BATs and BULLs) and such aircraft, if detected, would be highly vulnerable. However, it is likely that limited numbers of Chinese BEAGLEs could be used against Indian targets in sustained operations. - 36. Although Chinese air defenses in the Himalayan frontier area generally are weak, we believe the Chinese Air Force could provide some defense for a few localities along the frontier. The five airfields in the Sinkiang-Tibetan area most likely to be used in operations against India would be vulnerable to air attack. However, we do not believe that this alone would deter the Chinese from mounting operations from them. - 37. We believe that the Chinese are capable of undertaking limited airborne operations, although this appears unlikely in present circumstances. - 38. In sum, because of the general weaknesses of the CCAF/CCNAF in equipment and combat proficiency, the very formidable difficulties of maintaining logistic support over extended lines of communications, and the problem of mounting operations from inadequate bases in the - 17 - Himalayan area, we believe that Communist China poses only a limited air threat to India. - 18 - # APPENDIX A - CCAF/CCNAF AIR ORDER OF BATTLE ## CCAF | TYPE OF AIRCRAFT | ROLE | NOK | TOTAL | |---|---|---------------------------------|--------------| | Fagot (MIG.15) Farmer (MIG.19) Fresco (MIG.17) Fresco D (MIG.17D) | Fighter (Day) Fighter (Day) Fighter (Day) Fighter (Day) | 690
60
785
145 | 1,680 | | Beast (IL.10) | Ground Attack* | 40 | 40 | | Bat (TU.2)
Beagle (IL.28)
Bull (TU.4) | Light Bomber
Light Bomber
Medium Bomber | 100
175
15 | 290 | | C46/C47 Cab Coach Colt Coot Crate | Transport Transport Transport Transport Transport Transport | 30
35
35
25
2
45 | 172
2,182 | | | CCNAF | | | | Fagot
Fresco
Fresco D | Fighter (Day)
Fighter (Day)
Fighter (Day) | 170
70
30 | 270 | | Bat
Beagle | Light Bomber
Light Bomber | · 5
150 | 15 5 | CCNAF (Con't) | TYPE OF AIRCRAFT | ROLE | NOH | TOTAL | |----------------------|-------------------------------------|--------------|-----------| | Cab
Colt
Crate | Transport
Transport
Transport | 15
5
5 | 25 | | Madge
TOTAL | Reconnaissance | 10 | 10
460 | - # Figures rounded to nearest five. - ϕ Fresco D has a limited all-weather capability. - * In addition, a unit of 30 MIG.15 (FAGOTS) is specially trained in ground attack and, in fact, all FAGOT/FRESCOs are readily adaptable to ground attack. APPENDIX B #### TABLE 1 #### Performance of CCAF/CCNAF Aircraft #### FIGHTERS #### (INTERCEPT MISSION) | | | . | | Basic | Performance D | ata | | | | Comba | t Radius | Weapon | System | | |--|-------------|---------------|--------------|------------|---------------------------|--------------------|--|----------------|------------------------------------|-------------------------------|---------------|----------------------------|---|-------------------| | : | Fue | l Weig | ht | | Time to Ht. | 100 ft/min | Speed at Re | f. Ht. | Area | With | Plus
Ext. | | 2,000 | | | Aircraft and
Engines | Int.
lb. | Ext.
1b. | Total
lb. | AUW
lb. | (Mil power) mins. ft. | ceiling (1.5G) | Max Kts. | Cruise
Kts. | Intercept
Sortie
Description | Int.
Fuel
Only
n.mls | Fuel
n.mls | Weapons | Fire
Control | Elec-
tronics | | FAGOT (MIG.15) One VK-1 engine 5,940 lb. SIST centrifugal flow turbo-jet | 2,500 | | | 11,000 | 14.4/50,000 | 52,700
(44,700) | 500/50,000)
583/SL)
530/36,000) | | | 330 | | Guns:-
1x37mm
2x23mm | Lead computing gyro gunslight with manual ranging | VHF
(4channel) | | | | _ | | | | | | | lb. tanks | | 490 | | | | | | 2,500 | 1,400 | 3,900 | 12,600 | 9.7/40,000
13.5/45,000 | 51,500
(43,500) | II. | 475/48,600 | With 2x700
lb. drop tank | | 570 | | | | - 21 - | (Table 1 con't) | | | | | | | | | A DOU'N | A DESTRIPTION D | | | | |---|-------|---|----------|-------------------------------|----------------|------------------|---------------------------------------|------------------------|---------------|---|---------------------------------------|-------------------------|---------------| | | | | Basic | Basic Performance Data | ita. | | | | Comba | t Radiu | Combat Radius Weapon System | System | | | | | Podent Company of Action of Company of the | | | | | | - | With Plus | Plus | | | | | | Fuel | Fuel Weight | | ## + + ## | | Speed at Ref Ht. | Ref Ht. | Area | Int. Ext. | Ext. | | | | | Aircraft and | Int. | 3 | ld. | (Wil power) | ceiling | | Cruise | Intercept
Sortie | Fuel 1 | Fuel | | Fire | 18 S | | Santane | · P | TD. TD. | e
P | mins. ft. | (1.56) | Max Kts. | Kts. | Description | | n.mls | Weapons | 10, | tronics | | FRESCO A&B | 2,500 | 2,50 | 00,11,00 | 2,500 2,500 11,600 8,3/40,000 | 54,000 | 570/SL | | | 8 | 1 | FRESCO | FRESCO 1 | FRESCO A&B, | | One VK-1 en- | | | | 1.3.4/20,000 | (400)
(100) | 550/36,000 | | out and back | | | A&B | | රුන | | gine 5,940 | 2,500 | 1,400 3,90 | 0 13,200 | 27.6/50,000 | (46,000) | 570/SL | 505/50,000 | 505/50.000 utes combat | | - P | Guns:- | Lead com- | VHF (6 Chan- | | Ib. SLST | | | | | | 550/36,000 | | with 2x700 | |
} | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <u>.</u> | Passive Tail | | flow turbo-iet | | | ····· | | | 535/50,000 | | lb. tanks | • | •••• | | | Warner, Mark- | | | | | | | | | | | | | | | er, Beacon | | | | | | - | | | | 4. | | - | | <u> </u> | Receiver, | | | | | | | | | ٠. | ; | | | | ಹ | radio com- | | | | | | No. | | | | | | | | radar. | Altimeter | | FRESCO C&D | 2,500 | 2,50 | 0 11.800 | 2,500 11,800 8,5/40,000 | 55.000 | 570/ST. | 505/50 000 Hi ab 1 2200 | | —-
E | | | | | | (MIG 17) | | | | 13.8/50,000 | (47,000) | 560/36-000 | DON 601 / CO1 | 4, | <u>.</u>
0 | ! | FRESCO | FRESCO C | | | One WK-1 F | | | | | | 550/50,000 | - | trith 5 min | | | | Lead com- | | | engine 5,730 | | | | | | 2006001 | | utes combat. | | | -: sums | puting | | | Tos. SLST | | • | | | | - | | | | | | gyro gun=
cicht rith | | | Centrifugal | 2,500 | 1,400 3,900 | 0 13,400 | 11.8/40,000 | 55,000 | 570/SL | 505/50.000 With 2x700 | With 2x700 | | | | ELEUC WILL | | | flow turbo- | | | | 25.5/50,000 | (42,000) | 560/36,000 | | lb. tanks | ` |
} | | gun rang-
ing radar. | | | 10 7 LEO 1h | | | | | - | 250/50,000 | | | ** | | *** |) | | | • | | | | | | | - | | | | | FRESCO D | | | | | | | | | in simulais s | · · · · · · · · · · · · · · · · · · · | | | | | read com- | | | | | | | | | ekanadan a | | | | ****** | | puting | | | | | | | | | | | | | · · · · · · | | gyro gun- | | | | | | | | | | | | | | | sight with | | | | | | | | | ··· | | | | | 7 | AI radar. | | | | | | | | | *** | | | | | | Search/ | | | | | | | | | | | | - | | | track ranges | Ses | | | | | - | | | | | | | *************************************** | | 5/2mm suit | ls. | | | | | | | Į q | 8 4 4 | | | | | | able for | | | | | | | | | | | | | | | stern chase | 0 | | - | | | | | | 8 | - | | | - | - | only. | | | con't) | |---------| | Table 1 | | ټ
۸ | APPENDIX B | _ | | | | | 5 | | 다 | : | | | ا. | 1 | | - | | - | | | | | | | | | | | |------------------------|------------------|-------------------|-------------
-------------------------------|-----------------------|--------------------|----------------|-------------|----------------|----------------|--|---------------|------------|------------|--------|----------|---|--------|-----------|------------|----------|---------|-----------|-------------|----------|------------| | | | - | | Fire Elec-
Control tronics | VHF-(6 cha | FARMER Anel), IFF | Passive B. | Warner | Radio Com- | gyro gun-pass, | Marker Bes | con Receiv- | er, Radio | Altimeter. | _[| | | | | - qa | | | 1ges | <u>ا</u> | , | 9.50 | | Croton | Dy Suem | ····· | | | | A FARMERA | C&D | Lead com- | puting | gyro gm- | sight | | gun | ranging | radar. | FARMER B | Lead com- | puting | gyro gun- | sight with | AI radar | Search/ | track rer | 8/3mm suit- | able for | atom chase | | | Meapon by social | . projekte terr | - | Weapons | Guns :- | FARMER | 1x37mm | 2x23mm | FARMER | B&C | 2x30mm sight | FARMER I | 3x30mm | | | | | | | *** | | | | · | | | | Dod to | TOOUT O | Flus
Ext. | Fuel | | | · | , | | | | 520 | | | | | | | | | | | | | | | , | | Gombo | 3 | With
Int. | Fuel | Only
n.mls |)
Se | | | | | - | : | | | | | <u> </u> | | | | | | | | | | | | | | Area | Intercept | Sortie
Description | 520/45,000 High level | out and back | with 5 min- | utes combat | | | 510/42,000 With 2x1,100 | lb. tanks | | | | | | | | | | | | | | | | | Company | Ref. Ht. | | Cruise
Kts. | <u> </u> | Speed at Ref. Ht. | | Max Kts. | TS/099 | 760/36,000 | 640/50,000 | | | | TS/099 | 760/36,000 | 630/50,000 | | | | | | | | | | | | | | | 94.8 | | | 100 ft./min | ceiling
(1.5G) | 56,000 | (48,000) | | | | | ,55,000 | | | | - | - | | | | | | | | | | | | Basic Performance Data | | | Time to Ht. | (Mil power) mins. ft. | 5.0/40,000 | 12.0/50,000 | | | | 000001 | 3,750 2,700 29,100,100,000,000,000,000,000 | 7.5 of 46,000 | | | | | | | | | | | | | | | | Basic | | | | | 17,000 | | | | | 001 | 3,5 | | | | | | *************************************** | | | | | | | | | | | | | | ıt | Total AUW | 3,950 | | | | | 7 | 05T,0 | Fuel Weight | Ext.
1b. | | | | | | 2 | 2,200 | | | | | | | | | | | | | | | | | | | - | Fue | Int. | 3,950 | | | | | 7 | 3,750 | Aircraft and
Engines | FARMER (MIG 19) | Two RD9B Engines | 5,730 lb. SIST | axial ilow | turbo-jets re- | neared to | ar olti) | | | | | | | | | | | | | | | | TABLE 2 Performance of CCAF/CCNAF Aircraft APPENDIX B | 1 | 1 | | | | | GROUND ATTACK | | | | | | |--|-------------------------|-------------------------|------------------------|----------------------------|---|---|------------|--|--|---------------------------------|---------------------------------------| | Aircraft and
Engines | Internal lb. | Fuel
External
lb. | Weight
Total
1b. | All-up
Weight lb. | Maximum
Knots at
Height | Sortie
Descrip-
tion | Internal | t Radius Plus Ex- ternal Fuel (n.mls.) | Weapons | Fire
Control | Electronics | | BEAST (IL-10) One AM-42 1,975 BHP FAGOT (MIG 15) ONE VK1 5940 lb. | 2,500
2,500
2,500 | 700 | 2,500
3,200 | 14,500
12,100
12,900 | 270 at
5,000
574/S.L.
574/S.L. | Basic ground attack mission Standard Mission* with 2 x 550 lb. | 170
125 | | Fixed forward 2-23mm and 2 x 7.62mm. Flex- ible rear 1 x 12.7mm. Normal bomb load 880 1b, Max. bomb load 1320 lbs. or 6 x 132 mm unguided air- to-air roc- kets. | Optical
gyro
gun
sight | VHF RT I.F.F.
and Radio
Compass | | SLST Centrifugal
flow turbojet | | | | | | bombs, no external fuel. Standard Mission with 1 x 550 lb. bomb and 1 x 700 lb. external fuel tank. | | 200 | As for Area I | ntercept | Mission | | FRESCO A, B, & C
(MIG 17) | | _ | 2,500 | 12,600 | 570/s.L. | Standard Mission with 2 x 550 lb. bombs, no external fuel. | 60 | | As for Area I | ntercept | Mission | | | 2,500 | 7 00 | 3,200 | 13,500 | 570/s.L. | Standard Mission* with 1 x 1100 lb. bomb and 1 x 700 lb. external fuel tank. | | 180 | | | | | APPENDIX B | Weapons Fire Electronics
Control | As for Area Intercept Mission | climb speed for two minutes at normal rated power, climb at military power to cruise altifor maximum range, descend to sea level, combat five minutes at military power, climb on cruise back to base at speeds for maximum range, with reserve fuel for ten minutes loiter. | |------------------|--|--|--| | | Combat Radius Internal Flus Ex- Fuel Only ternal Fuel (n.mls.) | r ³ 30 | ormal rated power; clalevel, combat five
r maximum range, with | | | Sortie I
Descrip- F | Standard Mission* with two roc- kets and 2 x 1100 1b. external tanks | for two minutes at nange, descend to set to base at speeds for | | | Maximum
Knots at
Height | 570/s.L. | limb speed
or maximum
ruise back | | | All-up
Weight lb. | 20,300 | . 00 | | | t
Total
1b, | 6,150 | celerati
o target
at militu
t maximu | | : | Fuel Weight External 1b, | 2,200 | ff and ac cruise to course a level a | | | F
Internal
1b, | 3,950 | N = Takeo. tude, return at sea | | (Table 2 cont'd) | Aircraft and
Engines | FARMER A, C, &D | ** STANDARD MISSION = Takeoff and acceleration to best
tude, cruise to target at speeds
return course at military power,
at sea level at maximum enduranc | ____ APPENDIX B TABLE 3 BOMBER AIRCRAFT High Level Bombing Missions | | | | | | | | | | | | | |--|-------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------|-------------|---|---|------------------------|-----------------------------| | Aircraft
Engines | Fuel
Weight
(Ibs.) | Bomb
Weight
(lbs.) | AII-up
Weight
(1bs.) | Target
Altitude
(ft.) | Speq
Targe
Maximum
(Kts.) | t Alt. | | | Fire Control | Bombing System | Electronics | | BAT(TU-2) Two
ASH-82 FNV 1825
BHP Air cooled
radial engines. | 4,300 | 3,300 | 24,500 | 10,000 | 260 | 180 | 440 | 2x20mm guns in wing
roots.
lxl2.7mm flexible
gun in rear cockpit,
upper and lower gun
positions. | Optical gun-
sight | Optical bomb-
sight | VHF
Radio Compass
IFF | | BULL(TU-4) Four
ASH-90
2,200 BHP Air
cooled radials. | | ĺ | 140,000
140,000 | 30,000
30,000 | 350
350 | 200
200 | 1,750 | Barbettes (Upper forward (Lower forward (Upper aft (Lower aft Tail turret All mount 2x23mm guns. | control sys-
tem for upper
and lower bar
bettes. | also possible. | | | BEAGLE (IL-28)
Two VK-1
5940 lb. SLST
centrifugal
turbojets. | 14,500
14,500
14,500
8,400 | 6,600
4,400
2,200
2,200 | 51,000
48,800
46,600
40,500 | 34,500
35,500
36,500
39,000 | 425
430
435
445 | 380
380
380
380 | | Fixed forward nose guns 2x23mm Tail turret 2x23mm guns. | Optical lead
computing
gyro gun-
sights. | | Receiver | | t.d) | |-------| | 3 con | | Table | | _ | APPENDIX B | Fire Dombrook All-up Target Dombrook All-up Target | ا | | | | 1 | | _ | | | | |
--|----------------|------------|-----------|--------------|-----------|---------|----------|-----------------------|---|--|--------------------| | #65 1,700 Fixed nose gun 1x23mm Optical gyro frail, dorsal and gunsight for total bombsight ventral turrets and ventral turrets and ventral turrets. Remote op- pilot. mechanical comgans. Remote op- tical comgans puting pedestal sights with radar ranging in tail turret. Frobable central fire control system. to a reduced radius of 1,300 n.m. | fuel
Jeioht | Bound | | Target | Target ! | Mit. | ombat | · · | Ţ. | | | | 4.65 1,700 Fixed nose gun 1x23mm Optical gyro Mordan type op- Tail, dorsal and gunsight for tical bombsight ventral turrets pilot. Each mount 2x23mm Purrets: mechanical comguns. Remote op- tical compact computing pedestal sights with radar bombing pedestal sights with radar bombing in tail turret. Probable central fire control system. to a reduced radius of 1,300 n.m. bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | lbs. | 1 | | (ft.) | (Kts.) (| (Kts.) | N.W.) | | FIRE COUCLOI | bombing system | Electronics | | Tail, dorsal and gunsight for tical bombsight ventral turrets pilot. With electrocach mount 2x23mm Turrets: Remote opportant puting price call radar bombing pedestal sights with radar ranging in tail turret. Frobable central fire control system. To a reduced radius of 1,300 n.m. To a radius of lombs to a radius of about 1,200 n.m. | 7,500 | 10,000* | 170,000 | | | | | fixed nose gun lx23mm | | Nordan type op- | VIE, EF (W/P), | | to a reduced radius of 1,300 n.m. ventral turrets pilot. Turrets:- Remote op- puter for co- tical com- puter for co- tical com- puting cal radar bombing puting pedestal sights with radar ranging in tail turret. Probable central fire control system. System. bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | EH_ | | ö | tical bombsight | IFF, Radio Compass | | to a reduced radius of 1,300 n.m. Turrets:- mechanical comeguns. Remote op- puter for co-tical comegunating optiphisms radar ranging in tail turret. Probable central fire control system. System. bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | Α | | | with electro- | Radio Altimeter | | tical com- tical com- tical com- tical com- tical com- cal radar bombing pedestal sights with radar ranging in tail turret, Probable central fire control system. bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | <u> </u> | | Turrets:- | mechanical com- | Marker Beacon | | themote op- trial com- trial com- trial com- trial com- trial radar bombing pedestal sights with radar ranging in tail turret, Probable central fire control system, bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | | mitter for co. | | | tical com- tical com- puting puting pedestal sights with radar ranging in tail turret, Probable central fire control system, | | | | | | | 20 | durs . | kemore op- | Princes to the contract of | Kecelver | | to a reduced radius of 1,300 n.m. bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | tical com- | ordinating opti- | IIS | | redestal sights with radar ranging in tail turret, Probable central fire control system. to a reduced radius of 1,300 n.m. lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | puting | cal radar bombing | Gun ranging/ | | sights with radar ranging in tail turret. Probable central fire control system. to a reduced radius of 1,300 n.m. Lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | nedestal | | tail warning | | to a reduced radius of 1,300 n.m. tbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | 7+200 0+40 | | 0 | | radar ranging in tail turret, Probable central fire control system. bs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | SIGUES WIED | | radar. | | in tail furret. Probable central fire control system. to a reduced radius of 1,300 n.m. Lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | | | radar ranging | | Bomb/ Nav radar | | to a reduced radius of 1,300 n.m. tbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | - | | 1 +0 +0 + 1 + 11 + 11 + 11 | - | | | fire control system. System. Fire control system. System. Speciate from Lhasa at an AUW of 120,000 lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | _ | | | | | | Probable centr | | of to | | system. System. | | | | | | | | | free control | | | | wrry a maximum bomb load of 22,000 lbs. to a reduced radius of 1,300 n.m. perate from Lhasa at an AUW of 120,000 lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | , | | | - | | - | | SVST-PM. | | | | erate from Lhasa at an AUW of 120,000 lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | - | _ | • | _ | - | - | | *************************************** | | | | erate from Lhasa at an AUW of 120,000 lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | rry a | maximum bo | omb load | of 22,000 1 | lbs. to a | reduced | 1 radiu | s of 1,300 n.m. | | ** | | | perate from Lhasa at an AUW of 120,000 lbs. including 5,000 lbs. of bombs to a radius of about 1,200 n.m. | | | | | | | - | • | | | | | | perate | from Lhass | a at an A | NUW of 120,C | 000 lbs. | includi | 1g 5.00k | O lbs. of bombs to a | radius of abo | 1t 1.200 n.m. | TABLE 4 APPENDIX B #### TRANSPORTS #### CONSTANT CRUISE ALTITUDE MISSIONS | Aircraft and
Engines
| Fuel
Weight
1b. | Freight
1b. | Pas-
sengers
Number | All-up
Weight
1b. | Cruising
Altitude | Speed
Max.
Kts. | at Cruise Alt,
Cruise
Kts. | Range
n.mls. | Weapons | Fire
Control | Electronics | |--|-----------------------|------------------|---------------------------|------------------------------------|---------------------------------|-------------------------|----------------------------------|----------------------|-------------|-----------------|--| | CAB (IL-2) Two ASH-62 IR 985 BHP Air Cooled radial engines | 4,900
1,600 | 3,300
6,600 | or 20
 | 25,300
25,300 | 10,000
SL | 165
165 | 130
120 | 1,175
3 45 | a 40 | | 4 Channel VHF HF (W/T) IFF Radio Compass, Radio Altimeter | | COACH (IL-12) Two ASH-82FN 1,825 BHP Air cooled radial engines | 6,500
2,500 | 3,500
7,500 | or 18 | 36,500
36,500 | 10,000
5,000 | 220
220 | 160°
160 | 1,335
490 | | | 4 Channel VHF, HF (W/T)
IFF Radio
Compass, Radio
Altimeter | | CRATE (IL-14) Two ASH-82 R 1,900 BHP Air Cooled radial engines | 5,500
1,600 | 4,600
8,500 | or 18
 | 36,000
36,000 | 10,000
SL | 230
230 | 165
165 | 1,400
400 | | | 4 Channel VHF, HF (W/T) IFF ILS, Radio Compass Radio Altimeter, Marker beacon receiver | | COOT (IL-18) Four AL-20 4,000 ESHP Turbo-prop engines | 40,200
31,200 | 22,000
31,000 | or 75 | 134,000
134,000
Of can carry | 25,000
25,000
up to 111 r | 390
390
passenger | 320
320
s. | 2,500
1,600 | | | 2 x 20 Channel VHF; 2 x
Radio compass HF (W/T)
Radio Altimeters IFF, ILS,
Nav Radar Marker Beacon
Receiver | | COLT (AN-2) ASH-62 985 BHP Air cooled radial engine | 1,100
2,150 | 2,700
1,650 | or 12
or 7 | 11,550
11,550 | 6,500
6,500 | 150
150 | 110 | 485
950 | | | VHF, HF
Radio Compass
Marker Beacon
Radio Altimeter | #### TABLE 5 #### BEAGLE #### ESTIMATED TAKE-OFF REQUIREMENTS AT VARIOUS ALTITUDES #### STILL AIR CONDITIONS | A.U.W. 51,000 lbs | | | | | |-------------------|------------------------|------------|---------------------|----------------------| | Ambient Temp. | | Altitude | | · | | | 6,000 ft. | 10,000 ft. | 14,000 ft. | 15,000 ft. | | | TOR ft. | TOR ft. | TOR ft. | TOR ft. | | 15° C | 8,200 | 11,100 | 14,800 [%] | 16,100 [#] | | o° c | 6,850 | 9,500 | 13,200 [#] | 14,800 ³⁸ | | -10° C | 6 , 3 50 | 8,700 | 12,150 [%] | 12,950 [%] | | -20° C | 5 ,80 0 | 7,650 | 11,100 [%] | 12,000 [%] | | A.U.W. 48,800 lbs | | | | | | Ambient Temp. | | Altitude | | | | | 6,000 ft. | 10,000 ft. | 14,000 ft. | 15,000 ft. | | 15° C | 7,550 | 10,200 | 13,600 ^H | 14,800 ^H | | o° c | 6,300 | 8,750 | 12,150 [#] | 13,600 [#] | | -10° C | 5,850 | 8,000 | 11,150 [#] | 11,900 ^H | | -20° C | 5,350 | 7,050 | 10,200 | 11,000 [¥] | | A.U.W. 46,600 lbs | | | | | | Ambient Temp. | | Altitude | | | | | 6,000 ft. | 10,000 ft. | 14,000 ft. | 15,000_ft. | | 15° C | 6,700 | 9,050 | 12,050 [#] | 13,100 ^ж | | o° c | 5 ,60 0 | 7,750 | 10,750 [#] | 12,050 [#] | | -10° C | 5,200 | 7,100 | 9,900 | 10,550 [%] | | -20° C | 4,750 | 6,250 | 9,050 | 9,750 | | | | | | | NOTE 1: ** It is estimated that take-off in these cases would be prohibited by excessive tire speed. NOTE 2: At altitude 14,000-15,000 ft., for each 10 knots of headwind reduce T.O. Run by about 5 percent. NOTE 3: At 6,000 ft. each 10 knots of headwind reduce T.O. Run by about 7 percent. - 29 - APPENDIX C MAP TO FOLLOW AS SOON AS AVAILABLE. - 30 - APPENDIX D #### AIRFIELDS IN TIBET AND WESTERN CHINA The following is a summary of airfields in China which might be used for operations against India. | 39 ⁰ 31'N 75 | 5 ⁰ 58'E | kashgar/zang karavul | 4,000 feet Gravel. (4,000 feet a.m.s.l.) | |-------------------------|-------------------------------|----------------------|--| | 37°09'N 79 | 9 ⁰ 52†E | | 5,000 feet (est. min.) Packed gravel (3,000 feet approximate a.m.s.l.) | | 38 ⁰ 25'n 77 | 7 ⁰ 17'E | so-che (Yarkand) | 8,000 feet estimated. (4,400 feet a.m.s.l.) | | 36 ⁰ 45'N 95 | 5 ⁰ 35 ' E | KA-ERH-MU (GOLMO) | 8,000 feet crushed rock. (9,000 feet a.m.s.l.) | | 32 ⁰ 53'N 96 | 6 ⁰ 47 ' Е | YU-SHU | 8,000 feet claybound crushed rock. (12,525 feet a.m.s.l.) | | 30°30'N 9 | 1 ⁰ 06'E | LHASA | 13,000 feet claybound
crushed rock.
(14,177 feet a.m.s.l.) | | 31°33'N 9 | 1 ⁰ 44°Е | NAGCHHU DZONG | 12,000 feet (est.). Claybound crushed rock. (15,000 feet a.m.s.l.) | | 30 ⁰ 43'N 1 | 03 ⁰ 57 ' E | CHENG-TU/WEN-CHIANG | 7,500 feet concrete. (1,700 feet a.m.s.l.) | | 25 ⁰ 00'N 1 | 02 ⁰ 45'E | KUNMING | 9,500 feet concrete. (6,220 feet a.m.s.l.) | 2. Unconfirmed reports indicate the possibility that airfields may have been constructed at the following locations in Tibet: Approved For Release 2001/03/04 : CIA PDP80S01499R000100040034-9 APPENDIX D Rudog (33 27N, 79 42E); Tashigong (32 32N, 79 41E); Gartok (31 45N, 80 22E); Zhikatse (29 17N, 88 54E); Gyangtse (28 57N, 89 38E); and Tsona Dzong (28 00N, 91 59E). No construction details are available; however, if the airfields are in existence, it is unlikely that they would be suitable for jet operations. Supporting facilities would probably be limited and the maintenance of FOL supplies would be extremely difficult. 3. Reliable reports indicate that construction had probably begun near Tingri Dzong (28 25N, 86 38E) in 1959 but was abandoned in the initial stage. The area is a flat valley floor which is an excellent site for the construction of a large airfield.